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Abstract 
Autonomy software enables complex, robust behavior in 
reaction to external stimuli without human intervention. It is 
typically based on planning and execution technology. 
Extensive verification is a pre-requisite for autonomy 
technology to be adopted in high-risk domains. This 
verification is challenging precisely because of the 
multitude of behaviors enabled by autonomy technology. 
 This paper describes the application of advanced 
verification techniques for the analysis of the Executive 
subsystem of the NASA Ames K9 Rover. Existing 
verification tools were extended in order to handle a system 
the size of the Executive. A divide and conquer approach 
was critical for scaling. Moreover, verification was 
performed in close collaboration with the system 
developers, and was applied during both design and 
implementation. Our study demonstrates that advanced 
verification techniques are crucial for real-world planning 
and execution systems. Moreover, it shows that when 
verification proceeds hand-in-hand with software 
development throughout the lifecycle, it can greatly 
improve the design decisions and the quality of the resulting 
plan execution system. 

Introduction   
Verification is essential for planning and execution 
technology to be adopted in high-risk domains.  This paper 
is a demonstration of how advanced verification 
techniques were used on a plan execution system in the 
domain of Mars rovers.  
 
The work presented here has been performed as part of a 
project at NASA Ames. The objective of the project is to 
develop and demonstrate the use of advanced verification 
techniques for detecting integration problems in the design 
and implementation of NASA autonomy software. 
Traditional testing is hard for autonomous systems due to 
high complexity and unpredictable environments. 
Moreover, integration problems are very difficult to detect, 
and are typically checked during integration testing, i.e. 
after the entire system has been implemented. At that 
stage, fixing such problems may require significant time 
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and effort since they may involve major changes in the 
architecture of the system, and possible re-implementation 
of a large part of it. Therefore, we believe that the 
verification of a safety critical system should be addressed 
as early as possible during its design, and should go hand-
in-hand with later phases of software development.  
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Compositional verification throughout the 
software lifecycle 
 
Our work advocates the use of a combination of formal 
analysis techniques and testing to analyze autonomous 
systems throughout their lifecycle. Note that the size of 
such systems is beyond the capabilities of existing (formal) 
verification technologies. The combinatorics of the 
possible behavior paths is also beyond the capabilities of 
testing alone as a verification strategy. To address these 
issues, our work has the following goals (see Figure 1): 

• Apply, extend, and integrate verification tools at 
different phases of software development, i.e. at design 
and implementation phases of the software lifecycle. 

• Use divide and conquer techniques that decompose the 
verification of a software system into manageable 
verification of its components, to achieve scalability in 
(formal) software verification. The verification of the 
components can then be composed to verify the entire 
system, hence the name ‘compositional verification’. 

• Use design level artifacts to subsequently guide the 
implementation of the system and to enable more efficient 
verification at the source-code level. 
 
The main contribution of the work discussed here is the 
development of compositional verification and validation 
techniques for autonomy software, and their integration 
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with other verification techniques for an integrated 
lifecycle approach to verification. This approach to 
autonomy verification has been empirically validated and 
quantified through their application to a significant 
autonomy software system: the Executive of the K9 
experimental Martian Rover developed at NASA Ames, a 
concurrent software system of 35 K lines of C++ code.  
 
Our ‘divide and conquer’ approach achieved an order of 
magnitude improvement in performance, over monolithic 
verification techniques. The performance was measured in 
terms of time and memory consumption during model-
checking [11]. The verification effort was performed in 
close collaboration with the designers and developers of 
the system throughout its lifecycle, and consisted of the 
following steps:  

• Design level modeling. Detailed design level models 
were created. The models describe the overall concurrent 
architecture of the executive (coordinating and monitoring 
components) and advanced features that allow for 
increased autonomy (e.g. alternate plan execution, support 
for concurrent activities, separation of start and end 
constraints). A comprehensive set of requirements were 
also created (both English and formal descriptions). The 
requirements capture key concurrency and plan execution 
properties. We believe that both the models and the 
requirements could be successfully re-used for the design 
and analysis of future advanced executives.  

• Design level analysis. Model checking techniques were 
used for the exhaustive verification of design models 
against requirements. We developed automated 
compositional reasoning techniques to increase the 
scalability of model checking. These techniques were 
applied to the analysis of the design models, achieving a 
10x improvement – in terms of time and memory 
consumed - over monolithic (non-compositional) model 
checking. 

• Code level analysis. Although design level verification 
is important, subsequent code-level verification is needed 
to guarantee that the implemented system indeed satisfies 
the properties. We developed a methodology for using the 
design level artifacts for the compositional verification of 
source code, while improving the performance of 
verification tools at the code level.  For code-level analysis 
of individual components, we used two complementary 
techniques. We used software model checking, where we 
obtained a 3x improvement in terms of consumed memory. 
We also investigated the use of automated testing 
technology (a combination of run-time verification, to 
monitor the execution of the system, and automated test 
input generation, to systematically generate test inputs up 
to a given size). 
 
As a result of design level analysis, we discovered several 
integration problems. Based on these results, the developer 
changed the design of the Executive, resulting in a 
simplified architecture with increased modularity. We 

analyzed both versions of the Executive. While for the first 
version, we created the models after coding (partly by 
reverse engineering), for the second version, we created 
the design models before coding. During this process, we 
re-used component models from the previous version.  
 
This experiment convinced developers that there is 
considerable benefit in using verification techniques at the 
design level where several integration issues were 
identified and corrected. Models were also used to quickly 
experiment with design decisions. In addition, it was 
acknowledged that the later in the lifecycle design errors 
are identified, the more costly it is to fix them, especially if 
such errors require major design changes in the system. 
Our techniques are directly applicable to the analysis of 
other complex autonomous systems. This is particularly so 
for systems that make the notions of components explicit 
(e.g. the Mission Data Systems [7]), since our 
compositional techniques take advantage of the modular 
architecture of the system.  
 
Our work builds on a previous effort [15], where we 
compared the performance of tools based on formal 
methods to traditional testing for the code-level analysis of 
the original version of the code of the K9 Executive. The 
study presented in [15] compares verification tools on 
industrial-size autonomy software (see also [15] for a 
presentation of related work). What differentiates the work 
presented here is 1) the integrated application of 
techniques throughout the lifecycle and 2) the 
development and application of novel compositional 
techniques as a way of addressing scalability issues. 
 
The rest of the paper is organized as follows. In the next 
section we describe the architecture of the K9 Rover 
Executive and the design changes made as a result of our 
analysis. We then describe the compositional technologies 
that were used for design- and code-level verification. We 
follow with a discussion on the design-level modeling of 
the Executive; we also describe the properties that were 
checked and the results obtained from the lifecycle 
verification of the Executive. Finally, we close the paper 
with conclusions and some plans for future work. 

K9 Rover Executive   
The NASA Ames K9 Rover is an experimental platform 
for autonomous wheeled vehicles called rovers, targeted 
for the exploration of a planetary surface such as Mars. K9 
is specifically used to test out new autonomy software, 
such as the Rover Executive [16]. Previous to the 
development of autonomy software, planetary rovers were 
controlled through sequences of detailed, low level 
commands uploaded from Earth. The Rover Executive 
provides a more flexible means of commanding the rover 
through the use of high-level plans, which the Executive 
                                                 
 
 



interprets and executes in the context of the execution 
environment. The Executive monitors execution of 
primitive actions, and performs appropriate responses and 
cleanup when execution fails. The Rover executive is a 
software prototype written in C++ by researchers at NASA 
Ames (approximately 35K lines of C++ code). 
 
Plans are programs written in a language that specifies 
actions and constraints on the movement, experimental 
apparatus, and other resources of the Rover. The 
operational semantics of the language takes into account 
the possibility of failure of atomic-level command actions.  
The structure of a plan is a hierarchy of actions that the 
Rover must perform: each plan is a node; a node is either a 
task, corresponding to a primitive action, a (possibly 
concurrent) block, corresponding to a logical group of 
nodes, or a branch, representing a conditional branch 
within the plan. In addition, floating branches, which are 
plan fragments triggered dynamically, may be inserted into 
the plan, allowing a limited form of run-time plan 
modification. The plan language allows the association of 
each action with a number of state or temporal start, 
maintenance, and end conditions, which must hold before, 
during, and on completion of the action execution, 
respectively.  
 
In contrast to programming language interpreters, the 
executive is expected to be robust under many plan 
primitive execution failures. The operational semantics for 
recovery from primitive failures are extensive. 

Architecture of the K9 Executive 
Figure 2 illustrates the architecture of the executive, prior 
to the design changes that the developer made partly as a 
result of our analysis. The executive has been implemented 
as a multi-threaded system, made up of a main 
coordinating component named Executive, components for 
monitoring the state conditions ExecCondChecker, and 
temporal conditions ExecTimerChecker - each further 
decomposed into two threads - and finally an 
ActionExecution component that is responsible for issuing 
the commands to the Rover. Synchronization between 
components is performed through mutexes and condition 
variables (implemented using the Posix libraries).  
  
During the design level analysis of the executive, we 
discovered several concurrency problems with the inter-
thread communication between different components of 
the executive. To eliminate these problems, the developer 
changed the architecture of the system, as illustrated in 
Figure 3. The main change is the use of an Event Queue as 
a communication mechanism between the Executive and 
the rest of the components. As a result, the communication 
between different components became much simpler and 
less prone to errors.  E.g., our analysis of the first version 
revealed a concurrency problem (i.e. race condition) with a 
variable shared between the ExecCondChecker and the 

Executive. This shared variable was eliminated in the 
second version, its role being replaced by the Event Queue. 
 

Action 
Execution 

Executive 

Database 

Internal 

DBMonitor 

Plan 
Watcher 

 
 
 
 
 
 
 
 
 
 
ExecCondChecker

Exec Timer 
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Figure 3. Updated architecture of the executive 

Besides the changed architecture, the “new” executive 
presents several functional changes from the original one: 
added support for concurrent activities and “floating 
branches” (dynamically inserted branches and plan 
fragments), separation of temporal constraints from other 
pre- and post-conditions, and addition of relative temporal 
constraints to arbitrary actions within the plan. The high-
level changes are summarized below: 
 
• The Executive was changed to be event-based. An Event 
Queue was added. Both ExecTimer and ExecCondChecker 
were simplified to return all events, leaving the task of 
processing and ignoring events to the Executive. The 
Executive acts on an “execution context” - a data structure 
representing the current state of execution. This execution 
context was augmented to support concurrent activities and 
floating branches. The design documents were changed 
from state diagrams into event-processing loops. 

• The ActionExecution was changed to support parallel 
execution threads. 

• Simpler usage and removal of condition variables: there 
were a number of places in the first version where 
condition variables were used to coordinate information 
passing between modules (such as the ExecCondChecker 
and the Executive).  By simplifying the information flow 



(via the event queue), tight coordination is no longer 
necessary. 

• Design simplicity over code re-use: there were a few 
places in the first version where code, locks, or features 
were re-used for conciseness.  However, in some cases this 
made the design much more convoluted.  For example, the 
return value of ActionExecution was routed through the 
Database and then the ExecCondChecker for uniformity 
with other conditions being checked during execution.  
However, this makes the information flow in the system 
circuitous, unclear, and error-prone. 

Design-Level Verification  
At design level, we use verification techniques that 
exhaustively explore all the possible executions of a 
system. Although exhaustive exploration is typically 
intractable at the code level, designs tend to be more 
abstract, making them more amenable to efficient 
verification. Specifically, we use model checking: given 
some formal description of a system and of a required 
property, model checking [11] automatically determines 
whether the property is satisfied by the system. Since 
scalability can also be an issue at the design-level, we 
enhance model checking with compositional techniques. 
 
In this section, we describe the LTSA verification tool for 
design-level software analysis. We also present the 
compositional techniques with which we extended the 
LTSA.  

The Labeled Transition System Analyzer (LTSA)  
The LTSA [8] is an automated tool that supports 
Compositional Reachability Analysis (CRA) [9] of a 
software system based on its architecture. In general, the 
architecture of a concurrent system has a hierarchical 
structure. CRA incrementally computes and abstracts the 
behavior of composite components based on the behavior 
of their immediate children in the hierarchy.  
 
The input language FSP (Finite State Processes) of the tool 
is a process-algebra style notation with Labeled Transition 
Systems (LTS) semantics. An LTS is a finite-state machine 
whose transitions are labeled by actions, representing the 
internal and communication events in which a component 
may engage. LTSs are composed by synchronization of 
common actions and interleaving of local, internal actions. 
Safety properties are expressed as LTSs with extended 
semantics, and are treated as ordinary components during 
composition. Properties are combined with the components 
to which they refer. They do not interfere with system 
behavior, unless they are violated. In the presence of 
violations, the properties introduced may reduce the state 
space of the (sub) systems analyzed. 
 

The LTSA framework treats components as open systems 
that may only satisfy some requirements in specific 
contexts. By composing components with their properties, 
it postpones analysis until the system is closed, meaning 
that all contextual behavior that is applicable has been 
provided. The LTSA tool also features graphical display of 
LTSs, interactive simulation and graphical animation of 
behavior models, all helpful aids in both design and 
verification of system models. 

Compositional Analysis 
We extended the LTSA model-checking tool with several 
analyses done at the component level. The aim was to 
address the “state-space explosion” problem; this term 
describes the main limitation of model checking, which is 
that it requires storing the entire explored system states in 
memory, which is impossible for most realistic systems.  
 
Compositional verification advocates a “divide and 
conquer” approach to addressing state-space explosion: 
properties of the system are decomposed into properties of 
its components, so that if each component satisfies its 
respective property, then so does the entire system. 
Components are thus model checked separately. It is often 
the case, however, that components only satisfy properties 
in specific contexts (also called environments). This has 
given rise to the assume-guarantee style of reasoning. 
 
Assume-guarantee reasoning [12,13,14] first checks 
whether a component M guarantees a property P, when it 
is part of a system that satisfies an assumption A. 
Intuitively, A characterizes all contexts in which the 
component is expected to operate correctly. To complete 
the proof, it must also be shown that the remaining 
components in the system (M's environment) satisfy A. 
This style of reasoning is captured by the following 
assume-guarantee rule. 

〈A〉 M1 〈P〉   (Premise 1) 
〈True〉 M2 〈A〉 (Premise 2) 

 

            〈True〉 M1 || M2 〈P〉 

Several frameworks have been proposed to support this 
style of reasoning. However, their practical impact has 
been limited because they require extensive human input in 
defining assumptions that are strong enough to eliminate 
false violations, but that also reflect appropriately the 
remaining system. 
 
In previous work, we developed several novel techniques 
that automate assume-guarantee reasoning. We 
implemented these techniques in the LTSA tool and used 
them in the analysis of the design models of the Rover 
Executive. We should note that our techniques are general; 
they rely on standard features of model checkers and could 
therefore easily be introduced in any model checking tool.  
 



In [2], we present an approach to synthesizing the 
assumption that a component needs to make about its 
environment for a given property to be satisfied. The 
assumption produced is the weakest, that is, it restricts the 
environment no more and no less than is necessary for the 
component to satisfy the property. The automatic 
generation of weakest assumptions has direct application 
to the assume-guarantee proof. More specifically, it 
removes the burden of specifying assumptions manually 
thus automating this type of reasoning.  

 
Figure 4. Framework for assume-guarantee reasoning 

The technique presented in [2] does not compute partial 
results, meaning no assumption is obtained if the 
computation runs out of memory, which may happen if the 
state-space of the component is too large.  
 
We address this problem in [1], where we present a model 
checking framework for performing assume-guarantee 
reasoning using the above rule in an incremental and fully 
automatic fashion. The framework is illustrated in Figure 
4. To check that a system made up of two components M1 
and M2 satisfies a property P, our framework automatically 
learns and refines assumptions Ai for component M1 to 
satisfy the property, which it then tries to discharge on 
component M2. The framework uses an automata learning 
algorithm [17] to construct the assumptions for the 
compositional analysis of the models. 
 
At each iteration i, the learning algorithm is used to build 
an approximate assumption Ai, based on querying the 
system and on the results of the previous iteration. The two 
premises of the assume-guarantee rule are then checked. 
Premise 1 is checked to determine whether M1 guarantees 
P in environments that satisfy Ai. If the result is false, it 
means that this assumption is too weak, and therefore 
needs to be refined with the help of the counterexample 
produced by checking premise 1. If premise 1 holds, 
premise 2 is checked to discharge Ai on M2. If premise 2 
holds, then according to the assume-guarantee rule P holds 
in M1||M2. If it doesn’t hold, further analysis is required to 
identify whether Ai is indeed violated in M1||M2 or whether 

Ai is stronger than necessary, in which case it needs to be 
refined. The new assumption may of course be too weak, 
and therefore the entire process must be repeated. For 
finite state systems, this process is guaranteed to terminate. 
In fact, it converges to an assumption that is necessary and 
sufficient for the property to hold in the specific system.  
 
A useful characteristic of our framework is that the 
generated assumptions are minimal; they strictly increase 
in size as the learning algorithm progresses, and grow no 
larger than the weakest assumption for M1 to satisfy P. 
Moreover, in our experience, the interfaces between 
components are small for well designed software. 
Therefore, assumptions are expected to be significantly 
smaller than the environment that they represent in the 
compositional rules, and the cost of assume-guarantee 
reasoning will be significantly smaller than monolithic 
(non-modular) model checking, both in terms of time and 
consumed memory. Recently, we have extended our 
frameworks to handle more assume-guarantee rules and 
more than two components. 

Code Level Verification   
In this section, we describe our methodology for using the 
artifacts of the design level analysis to decompose the 
verification of the implementations [4]. For source code 
verification we investigated two technologies: software 
model checking (achieves exhaustive verification at the 
price of scalability) and run-time verification (achieves 
scalability at the price of exhaustiveness). 
 

 
 
Figure 5. Using design level assumptions for source 
code verification 

To address the scalability issues associated with software 
verification, our approach integrates assume-guarantee 
reasoning of concurrent systems at the design and at the 
implementation level (see Figure 5). At the design level, 
the architecture of a system is described in terms of 
components and their behavioral interfaces modeled as 
LTSs. Design models are intended to capture the design 
intentions of developers, and allow early verification of 
key integration properties. For example, consider a system 
that consists of two design level components M1 and M2, 
and a property P, describing the sequence of events that 
the system is allowed to produce, or equivalently the bad 
behaviors that the system must avoid. 
                                                 
 
 

Design 

Code 

M2 M1 A 

C2 C1 A P

P

Model Checking 
1. 〈 A i 〉 M 1 〈 P 〉 Learning 

real 
error? 

2. 〈 true 〉 M 2 〈 A i 〉 

A i 

counterexample – 

counterexample – 

false 

true 
true 

false 

YN 

P holds 
in M1||M2

P violated 
in M1||M2

Learning 1. 〈 A i 〉 M 1 〈 P 〉 

real 
error? 

2. 〈 true 〉 M 2 〈 A i 〉 

Model Checking 
1. 〈 A i 〉 M 1 〈 P 〉 Learning 

real 
error? 

2. 〈 true 〉 M 2 〈 A i 〉 

A i 

counterexample – 

counterexample – 

false 

true 
true 

false 

YN 

P holds 
in M1||M2

P violated 
in M1||M2

Learning 1. 〈 A i 〉 M 1 〈 P 〉 1. 〈 A i 〉 M 1 〈 P 〉 

real 
error? 

2. 〈 true 〉 M 2 〈 A i 〉 

refine assumption 

refine assumption 



To check in a scalable way that the composition of M1 and 
M2 satisfies P, we use the assume-guarantee frameworks 
described in the previous section. We expect that, with the 
feedback obtained by our verification tools, the developers 
of the system will correct their design models until the 
property is achieved at the design level. At that stage, our 
frameworks will have automatically generated an 
assumption A that is strong enough for M1 to satisfy P but 
weak enough to be discharged by M2.  
 
To then establish that the property is preserved by the 
implementation, our approach uses the automatically 
generated assumption A, to perform assume-guarantee 
reasoning at the source code level. The implementation is 
decomposed as specified by the architecture at the design 
level (i.e. components C1 and C2 implementing M1 and M2, 
respectively), and we establish that C1 composed with C2 
satisfies P by checking that C1 satisfies P under 
assumption A, and by discharging A on C2. If both these 
checks return true then the property is preserved by the 
implementation. Otherwise, the counterexample(s) 
obtained expose some incompatibility between the models 
and the implementations, and are used to guide the 
developers in correcting the implementation, the model, or 
both. For the actual verification of source code, we 
investigated two technologies: software model checking 
and run time verification, which are described below. 

Software Model Checking 
We used the Java Pathfinder software model checker (JPF) 
[18] developed at NASA Ames.  JPF is an explicit state 
model checker that analyzes programs written in Java (an 
implementation for C++ analysis is currently being 
developed). JPF checks for deadlocks and assertion 
violations. JPF is built around a special purpose Java 
Virtual Machine (JVM) that allows Java programs to be 
analyzed. JPF supports depth-first, breadth-first and 
several heuristic search strategies to search systematically 
explore the state spaces of the analyzed programs.  

Run Time Verification and Automated Test Input 
Generation 
For the first version of the Executive we focused on 
checking implementations using compositional reasoning 
and software model checking tools. In the second version 
we experimented with methods that provide even more 
scalability at the price of exhaustiveness. Specifically we 
investigated the use of lighter-weight analysis techniques, 
i.e. run time verification, for the compositional analysis of 
the second version of the executive.  
 
Run time verification is an advanced testing technique that 
provides a means for constructing oracles that examine not 
just the output and interfaces of a system, but the internal 
computational status of the system. In run time 
verification, a program is instrumented to emit events 
which are then monitored to check for conformance to 

formalize requirements, either stated as temporal logic 
assertions, or as specialized algorithms looking for 
common errors, such as deadlocks and data races.  
 
For the analysis of the Rover Executive, we used the Eagle 
temporal logic runtime verification framework [5]. In order 
to generate different executions for thorough testing, we 
used automated test input generation techniques developed 
at NASA Ames to create all (non-isomorphic) input plans 
up to a pre-defined size [5]. Given a formal description of 
the inputs to a system, the test input generation techniques 
combine symbolic execution, model checking and heuristic 
search to systematically search and generate the input state 
space and to achieve full coverage of the input 
specification.  

Modeling and Analysis of the Rover Executive   

Initial Modeling 
We produced abstract models of the Rover Executive that 
contained enough information – but at a higher level – to 
allow us to study architectural properties of the system and 
detect potential integration problems. The developer of the 
executive initially described the architecture of the system 
as a hierarchy of threads as illustrated in Figure 2. 
Moreover, he provided some design documents in his own, 
ad-hoc flowchart-style notation, describing the main 
functionality of the threads in the Rover Executive.  

 

db unlock

db condvar signal 

return 

Database::dbChanged = true 

changes to Database

db lock 

Database::DBAssert

 

 

 

Database_DBAssert =        
 (db.lock ->     
  info.assign[Data] ->  
  dbChanged.assign[True]->  
  SignalCV('dbCV);Unlock), 
Unlock =(db.unlock->END). 

Figure 6. Original design (left) and corresponding FSP 
model (right) produced for a method in the database  
 
These documents were produced “after the fact”, meaning 
after a first implementation of the Rover was available. It 
took the developer only a few hours to produce these 
documents. Moreover, he found the diagrams that we 
produced of the architecture of the system helpful, and 
                                                 
 
 



subsequently maintained it for communicating the 
structure of the system to his collaborators. 
 
Figure 6 illustrates the original design provided to us and 
the corresponding (FSP) model that we produced. In the 
model, Data is the domain of values for variable info. 
SignalCV is the method that needs to be called to signal a 
specific condition variable, in this case dbCV. Unlock is 
simply a state alias – mutex db must get unlocked after 
signaling dbCV and before returning. 

We made a systematic effort to keep the architecture 
explicit in the model. Each thread has a unique instance 
name – the name of the thread in the architecture – which 
prefixes all the actions in its behavior, thus clearly 
differentiating its behavior from that of other threads in the 
system. This was achieved by the instantiation operator 
that the LTSA tool provides. Moreover, communication 
points were modeled by binding the associated actions, 
captured by the renaming operator of the LTSA. The 
resulting model was approximately 600 lines of FSP code 
that had a very close correspondence to the design 
documents provided by the developer. 

Modeling the New Executive 
As mentioned, the developer changed the design of the 
Executive, partly as a result of our analysis. We created 
two new models for the design level analysis of the new 
executive. Model 1 (~800 lines of FSP code) captures the 
new architecture of the executive, the queuing mechanism 
and the detailed event handling for block and task nodes. 
Model 2 (~900 lines of FSP code), which captures 
synchronous and asynchronous execution of floating 
branches. 
 
Model 1: Queuing and Event Handling  
We reused from our previous model the FSP encoding of 
the functionality of mutexes and condition variables. We 
added a model for the FIFO Queue and the event handling 
mechanism in the Executive and we updated the 
ExecCondChecker and ActionExecution models according 
to the new design, as illustrated in Figure 3.  

Model 2: Floating Branch Execution  
We extended Model 1 to handle the execution of floating 
branches. This execution is triggered by pre-defined 
conditions. Floating branches can be synchronous (i.e. 
triggered at action transitions within the plan) or 
asynchronous (i.e. monitored continuously in parallel with 
execution). The execution of floating branches involves 
suspending execution of the principal plan, executing the 
floating branch, and resuming execution in the principal 
plan.  In the case of asynchronous floating branches, the 
currently executing action is suspended, and then it 
resumes after completion of the floating branch.   We 
extended the Executive’s main loop to deal with new 
events (e.g. Task Suspension/Suspended, Task Resume, 

Floating Branch Expand and Floating Branch Terminate). 
We also extended the event handling mechanism in node 
(i.e. block or task) execution, to deal with 
suspension/resuming of the execution of the current node 
when a floating plan is activated. We added functionality 
for event handling in nodes of synchronous and 
asynchronous floating branches. 

Properties 
Our analysis focused on properties related to the correct 
execution of the plans, according to the plan semantics, 
and to the synchronization issues between threads. 
Specifically, we analyzed the following properties: 
 
P1: If the last task in the plan terminates successfully, then 
the only possible outcome for the plan is successful 
termination. 

P2: When a task fails, the continue-on-failure flag on the 
block will always be checked before any outcome is 
produced; moreover, if continue-on-failure is true, the 
outcome is success, otherwise it is failed. 

P3: The Executive only receives ExecCondChecker events 
if it has registered for them. 

P4: The ExecCondChecker only puts events in the queue if 
the Executive registered for them. 

P5: When a task fails, it will always check its continue-on-
failure flag; moreover, if the continue-on-failure flag is 
false, no subsequent task in the block will be started; new 
tasks can be started after the parent block reports the 
results (i.e. other block is expanded). 

P6: If a task fails, then the parent block’s continue-on-
failure flag will be checked: if it is true, then the block 
succeeds, otherwise it fails. 

P7: If the Executive thread reads the value of the shared 
variable savedWakeupStruct, then the ExexcCondChecker 
thread should not read it until the Executive clears it first.  

P8: (Race condition) All accesses to shared structure 
conditionSetChanged by the Executive and the 
ExecCondChecker threads will be protected by locks.  

P9: (Race condition)   All accesses to shared structure 
existConditions by the Executive and the 
ExecCondChecker threads will be protected by locks. 

P10: Absence of local and global deadlocks. 

P11: No irrelevant action execution events can happen. 

P12:  No irrelevant condition checker events can happen. 

P13: Floating branches and principal plans cannot execute 
concurrently. 



Design Level Verification 
Our initial analysis uncovered a number of synchronization 
problems such as deadlocks and data races. Moreover, the 
design models were used for quick experimentation with 
alternative solutions to exiting defects, leading eventually 
to the re-design of the software. 
 
As mentioned, safety properties are expressed as LTSs. For 
example, Figure 7 illustrates property P7 that was 
formulated by the developer. The property is represented 
as two states, corresponding to the shared variable 
savedWakeupStruct being cleared or not cleared, and with 
a third state representing the error state. The developer 
expected the property to be satisfied. We applied assume-
guarantee reasoning as supported by our tools, were 
assumptions were generated for the ExecCondChecker 
thread (module M1) and discharged on the Executive thread 
(module M2).  
 
The results obtained from the design-level analysis are 
summarized in the first row of Table 1. The design level 
model is an order of magnitude smaller than the 
corresponding Java implementation. The largest state space 
that our modular verification techniques compute consists 
of 541 states, as opposed to 4672 states computed by 
monolithic model checking. We therefore achieved an 
order of magnitude savings in terms of space.   

Table 1. Analysis results at design & code level 

Analysis Tool LOC Monolithic 
model 
checking 

Modular 
verificatio
n 

Design 
level 

LTSA 700 FSP 4672 states 541 states 

Code 
level 

JPF 7.2K 
Java 

183K states 53K states 

 
The generated assumption consists of 5 states. It describes 
an environment where the Executive thread reads the 
savedWakeupStruct variable after acquiring the exec mutex 
and holds the mutex until it clears (assigns value 0) the 
variable. The assumption is illustrated below (in FSP).  

Assumption = Q0, 
Q0 = ( executive.exec.lock -> Q2), 
Q2 = (executive.exec.unlock -> Q0 
    | executive.savedWakeupStruct.read[1] -> Q3 
    | executive.savedWakeupStruct.assign[0] -> Q4 
    | executive.savedWakeupStruct.read[0] -> Q5), 
Q3 = ( executive.savedWakeupStruct.read[1] -> Q3 
    | executive.savedWakeupStruct.assign[0] -> Q4), 
Q4 = ( executive.exec.unlock -> Q0 
   | executive.savedWakeupStruct.assign[0] -> Q4 
   | executive.savedWakeupStruct.read[0] -> Q5), 
Q5 = ( executive.savedWakeupStruct.assign[0] -> Q4 
    | executive.savedWakeupStruct.read[0] -> Q5). 

This assumption could not be discharged on the Executive 
thread. The counterexample obtained describes a scenario 
where the Executive thread reads savedWakeUpStruct and 
then it performs wait on a condition variable associated 
with the exec lock (a wait operation automatically releases 
the lock). The problem was temporarily fixed by adding to 
the Executive thread a statement that clears the shared 
variable. Note that the variable savedWakeupStruct was 
eliminated altogether when the Executive was re-designed.  

 

0

error

exec.savedWkupStr.read[0..1] 

1

exec.savedWkupStr.assign[0] 
execCondCh.savedWkupStr.assign[0..1] 

execCondCh.savedWkupStr.read[0..1]

 

Figure 7. Example property  
 
Stage I In the first stage, we checked several simple 
properties (P10, P11, P12). To do this, we decomposed the 
system into two modules, M1 that consists of the Executive, 
the ActionExecution and the EventQueue, and M2 that 
consists of the ExecCondChecker and the remaining 
threads in the system. The results of our analysis are 
summarized in Tables 2a-2c. 
 
Table 2a. Analysis results - stage I 
Property Subsyste

m 
#States, #Trans |A| Result 

P10 M1 3805, 10450 n/a false 
P11 M1 8478, 22875 n/a true 
P12 M1 8478, 22875 37

4 
false 

 
Table 2b. Analysis results – property P12 
Subsystem #States 
M1 8478 
M2 (discharge) 18080 
M1 || M2  (CRA) 74649 
M1 || M2  (monolithic) 84690 
 
Table 2c. Reachable state space computation 
Subsystem #States 
M1 8478 
M2  14448 
M1 || M2  (monolithic) > 10 Million 
 
We first checked local and global deadlocks (P10) by 
incrementally putting components of M1 and M2 together. 



Note that, in the LTSA, the assumption is that environment 
inputs are always available. This is a significant benefit for 
modeling partially specified systems (or verification of 
modules of systems), because one does not need to 
explicitly model drivers for the component. Moreover, 
uninteresting cases where the Executive is deadlocked 
because no plans are available at the input are ignored. 
 
A local deadlock was detected in M1. Two threads, 
Executive and ActionExecution, synchronize on shared 
transitions (in order to start and stop the execution of 
actions) and they also synchronize via the EventQueue 
(i.e., the ActionExecution sends events when the execution 
of the action is completed). The counterexample represents 
a behavior where the Executive tries to stop the current 
action, without knowing that the current action was 
completed (i.e., before processing the respective event), 
while the ActionExecution is waiting to start a new action. 
This was a problem in our design, which we fixed (by 
adding self-loops for “unconsumed” stops from the 
previous actions). 
 
Property P11 was checked on M1. This property holds in 
any environment. Property P12 was checked on the same 
subsystem. This property does not hold in any 
environment, since it depends on the behavior of the 
ExecCondChecker, which is in M2. We generated 
automatically the assumption that M1 needs to make about 
the ExecCondChecker for the property to hold. We 
obtained an assumption of 374 states. By minimizing M1 
using compositional reachability analysis as supported by 
the LTSA, we obtain a subsystem of 1493 states; the 
assumption is therefore more concise to use for analysis. 
  
When we tried to discharge this assumption on the 
ExecCondChecker, after exploring 18080 states we 
obtained a counterexample describing the following 
scenario: the ExecCondChecker detects the fact that a 
maintenance condition has been broken, sends an event to 
the EventQueue, but the action terminates before this event 
gets handled. As a result, the event remains unconsumed in 
the EventQueue and gets handled in the context of the next 
node, at which time it is irrelevant. The counterexample 
exhibited the fact that the system is highly asynchronous, 
as a result of which it is possible for the EventQueue to 
hold “obsolete” events that are no longer relevant to the 
execution of the current node.  
 
As illustrated in Table 2b, our assume-guarantee 
framework enables a significant reduction in the state 
space that needs to be explored (18080 states) as compared 
both to CRA (74649 states) and to monolithic model 
checking. Note that, as illustrated in Table 2c, if we disable 
error detection and simply compute the reachable state 
space of the model, monolithic model checking runs out of 
memory after exploring 10 million states.  
 
Stage II After we enriched our models with advanced 
autonomy features (i.e. detailed task and block execution, 

floating branch execution, etc.) we checked the remaining 
properties (P1-P9, P13). We should first note that we could 
not compute the reachable states of the whole system (the 
computation runs out of memory when using 1GB of 
memory); this means that checking any property on the 
whole system would not complete.  
 
We therefore used compositional techniques. Again, we 
decomposed the system into components: M1 (the 
Executive thread, the Event Queue and the ActionExecution 
thread) and M2 (the ExecCondChecker thread). M1 has 
47906 states, M2 has 14496 states. We analyzed the 
properties using assume guarantee reasoning. Checking 
properties P3, P4, P8, P9 required small assumptions (the 
largest obtained assumption has 7 states). Interestingly, 
properties P1, P2, P5, P6 were checked locally (no 
environment assumption was necessary). This reflects the 
modularized architecture of the new executive. 
 
During our analysis we discovered a problem with the 
design (reflected in the implementation) due to the 
asynchronous communication between components 
through the queue. Specifically, property P1 did not hold 
because of the order of events arriving in the queue: if a 
task terminates successfully and at the same time a time-
out occurs or a condition fails for the parent block, then, 
the outcome for the parent block can be non-
deterministically success or failure, depending on the order 
in which the corresponding events are put in the queue. 
Similar problems were found in relation to the execution of 
synchronous floating branches. The problems were 
corrected according to the developer’s suggestions, by 
adding an extra test for cases when events signaling time-
outs or failed conditions are received by the Executive 
thread. 
 
It is interesting to note that compositional reachability 
analysis fails for this large case study. E.g. for M1 
composed with property P3 which has 47918 states, 
compositional reachability analysis runs out of memory, 
while the generated assumption has only 5 states computed 
in 16.165 seconds.    

Code Level Verification 
 
Model Checking We used JPF for the analysis of the 
software components of the first version of the Executive 
code (which was manually translated in Java). To check 
each component in isolation, we used the assumptions that 
were generated during design level analysis to build 
appropriate environments. Techniques for automated 
generation of environments from user supplied 
assumptions are presented in [6]. These environments 
provide stubs for the methods called by the component that 
are implemented by other components, or test drivers that 
execute a component by calling methods that the 
component provides to its environment. Moreover, these 



environments are constrained by the design level 
assumptions. 
 
Some of the results of this analysis are reported in the 
second row of Table 1. Compositional verification yields a 
3x improvement (in terms of memory used) over 
monolithic verification. E.g., when we checked property 
P7 on the corrected system, monolithic (non-
compositional) model checking explored 183K states and 
it consumed 952 Mb of memory in 12 minutes and 12 
seconds. In contrast, compositional verification explored at 
most 60K states, and it consumed 315 Mb in 6 minutes and 
55 seconds. 
 
Run Time Verification We used Eagle for the run time 
verification of the C++ code of the Executive. The design-
level artifacts (properties and assumptions) were 
automatically translated into Eagle monitors. We 
instrumented (by hand) the code of the Executive, to emit 
events that appear in these assumptions and properties. To 
generate test input plans, we encoded the plan language 
grammar as a non-deterministic input specification. 
Running model checking on this specification generates 
hundreds of input plans in a few seconds. 
 
We developed a tool that integrates run time verification 
and test input generation to perform assume guarantee 
style reasoning about the run-time behavior of the 
executive. The tool is fully automated after setup. It 
generates a set of test input plans, a script runs the 
Executive on each plan and it calls Eagle to monitor the 
generated run-time traces. The user can choose to perform 
a whole program (monolithic) analysis or to perform 
assume-guarantee reasoning. In the latter case, the 
Executive is broken in two parts: M1 consists of the 
Executive thread, the Event Queue and the ActionExecution 
thread, and M2 consists of the ExecCondChecker thread 
and the remaining threads. 
 
We ran several experiments for different input plan 
configurations. For Property P3, we found a discrepancy 
between the implementation and the models, due to the 
fact that nodes can send null conditions. Instead of putting 
these in the condition list (and altering the values of 
variables conditionSetChanged and existConditions), the 
ExecCondChecker code immediately pushes an event to 
the queue. We corrected this in the model. 
 
One benefit of our approach is that the use of design-level 
assumptions in the verification of software 
implementations enables the detection of costly integration 
problems well prior to system integration. In fact, assume-
guarantee verification can detect such problems as soon as 
one component of a software system becomes “code 
complete” (while the remaining software components may 
not be even implemented yet). Whenever the complete 
implementation of one component becomes available, we 
can check it against the required properties, under 
environments that are suitable restricted by the design-

level assumptions. When the rest of the components 
become available, we check the assumptions on these 
components. As a result, we guarantee that the whole 
system behaves correctly, without being necessary to 
perform verification/testing on the integrated components.  
 
Also note that assume-guarantee verification provides 
better unit testing. We only test components (i.e. units) in 
the environments in which it can be expected that the units 
will be integrated. Moreover, assume-guarantee reasoning 
provides increased behavioral coverage of the integrated 
system. We have found that, in some cases, assume-
guarantee verification uncovers errors that escape 
integration testing. The reason is that by generating and 
analyzing traces for each component in isolation, we can 
predict, by mathematical inference, properties about all the 
possible inter-leavings of these traces, while at system 
integration, one could generate only a subset of these 
interleavings.  

Conclusions and Future Work   
We described the development and application of 
compositional verification techniques to a significant 
autonomous system throughout its lifecycle. Subtle errors 
in the design and implementation of a rover executive have 
been detected Compared to testing by itself, these 
techniques are particularly good for two challenging 
aspects of autonomy verification:  

1) Assuring correct execution of plans, particularly in 
environments that cause multiple failures of plan 
primitives. Robust execution of plans, especially plans 
with contingencies, is a significant advantage of autonomy 
software compared to traditional sequence execution. 
Verifying this advantage is expected to be a significant 
factor in the acceptance of autonomy software for NASA. 

2) Concurrency is an inherent feature of autonomy 
software but is difficult to debug through testing alone. 
Concurrency is inherent to autonomy:  first, because 
responding robustly to asynchronous environmental 
changes introduces concurrency – and difficulties such as 
race conditions – independent of implementation. Second, 
in contrast to sequence execution or simple sequential 
plans, plans for rovers consist of multiple concurrent tasks 
overlapping in time. Third, modern programming practices 
for complex software favors encapsulating control into 
multiple threads, introducing concurrency at the 
implementation level. Concurrency errors are typically 
manifested only as transient faults in black-box testing, 
and are often masked by thread scheduling and 
computational resource profiles that differ subtly and 
uncontrollably between the testing environment and actual 
field conditions. Our techniques provide high assurance 
that autonomy software is free of concurrency errors. 
                                                 
 



 
The techniques presented have several benefits. First, they 
can be applied early in the software development life 
cycle, when it is cheaper to detect and fix bugs. Second, 
our compositional techniques provide a way to 
automatically decompose global (system-level) 
requirements into local properties, which are cheaper – in 
terms of time and consumed memory – to check, with an 
increased level of confidence. Third, assumptions allow 
checking global properties (that are usually checked at 
integration testing) at unit testing level, thereby increasing 
the chances of detecting costly integration errors early. 
Fourth, our results show that compositional reasoning can 
enhance integration testing at the source-code level (by 
exploring multiple inter-leavings in concurrent programs). 
 
We assume a top-down software development process 
where one first creates and debugs design models that are 
subsequently used to guide the implementation. It goes 
without saying that it is not a straightforward task to obtain 
a correct model. However, verification tools provide 
several features such as interactive simulation, which 
facilitate the debugging of models. Moreover, as our 
results show, it is essential to make connections between 
verification performed at the design level with the actual 
implemented system. Note that we are currently 
investigating a complementary approach that uses 
abstraction techniques to automatically extract models 
from source code [3]. 
 
In the future, we plan to leverage our work for the analysis 
of other executives (and autonomy software), with minimal 
modifications (e.g. for plan generation, we could simply 
modify the plan language grammar; for properties and 
assumptions, we expect to build upon the existing 
specifications). For example, we plan to participate in the 
development and analysis of next generation executives, 
built within the CLARAty decision layer distribution [10].   
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